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Summary 

It  is desired to rank the parameters from a set of Poisson populations 
based on fixed, equal size samples from each population. A Bayes solu- 
tion is derived for several types of loss functions and gamma priors, 
under the usual assumptions of symmetric and additive losses and sym- 
metric priors. 

1. Introduction 

We assume that  a set of n Poisson populations has been observed, 
yielding (through reduction by sufficiency) the data ~1 ," - ,  ~,. (The re- 
sults presented apply equally as well to a set of Poisson processes ob- 
served over time periods of equal length.) The object is to determine 
an ordering of the parameters ~1,-.., 2~, allowing the possibility of "t ies".  
That is, for each pair of parameters 2~, 2#, there are three decisions 

.available: ~ is greater than ~j, 2~ is greater than ~ ,  ~ and ~ are un- 
ranked. The approach we adopt is thus closely related to that  of earlier 
work by Duncan [2], [3], Bland and Bratcher [1], and Naik [5]. 

2. General description and solution of the problem 

We make the following basic assumptions: 
(i) The prior information, in the form of a probability distribution, is 

the same for each ~. We denote the prior by ~(2). 
(ii) The loss function for the overall problem can be taken to be the 

sum of the loss functions for certain component problems. 
(iii) Finally, the loss functions for the component problems are sym- 

metric in the sense that permutations of the decisions and corre- 
sponding parameters leave the loss unchanged. 

* This research was sponsored by the office of Naval Research, Contract No. N000 
14-68-A-0515, Project No. NR 042-260. 
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The assumptions ( i ) a n d  (iii)can best be summarized and justified by 
saying that  the populations are to be treated equally a pr/ori  and the 
seriousness of an incorrect decision is the same regardless of the popula- 
tions concerned. The concept of additive loss, wl~ich appears in assump- 
tion (ii), was introduced and discussed by Lehmann [4]. 

The component problems mentioned above are two-decision problems 
which are easily solved. In particular, for each pair of parameters, say 

and /J, there are two component two-decision problems related to the 
three-decision problem described in Section 1. One consists of the de-  
cisions do: ~ and ~ are unranked and dr: 2>/~. The other problem is 
obtained by interchanging the parameters. Denote by L(d; 2, p) the loss 
incurred in making decision d when 2 and /J are the true values of the 
parameters. 

It is seen that  a solution to each of the component two-decision 
problems for 2 and /~ will specify a solution to the three-decision prob- 
lem, provided only that  the solutions to the component problems are 
compatible. That is, we require that  it is never possible to make the 
two decisions ~>/~ and /~>2 simultaneously. In the same way, solutions 
to the three-decision problems lead to a solution for the overall problem, 
if inconsistent decisions (such as 2~>2~, 2z~>2z, and ~z~>~) are never made. 
We do, however, allow decisions of the type:  2~ and 2n are unranked, 23 
and 2z are unranked, but 2t;>2,. 

Because of the assumptions of symmetric losses and identical priors 
only one two-decision problem actually need be solved; these assump- 
tions are not essential and the problem could be solved without them. 

THEOREM. Under assumptions ( i ), (ii), and (iii), the Bayes rule for 
the overall multiple comparisons problem is given by the following: for 
each pair ~,, ~,  make decision dt i f  h(x,, x~)>0; otherwise, make deci- 
sion do, where 

xJ )=f :  i :  [L(do ; 2,, 2 : ) -L(d, ;  2,, ~j)] h(x,, 

�9 

provided the~ component solutions are compatible. (f(x[2) is the prob- 
ability mass function of the observed Poisson varia2ges.) Note that the 
solution is unique i f  and only i f  the probability that h(x,, x~)-~ 0 is zero. 

We omit the proof; it is tedious algebraically and is available for 
similar situations, along with further discussion and background, in the 
references cited above�9 
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3. The Bayes rule for gamma priors and absolute error loss 

Suppose that we observe X and Y from Poisson populations with 
parameters 2 and p, respectively. We consider first the loss function 
given by 

( i )  

0 ,  if 2~p ( 
L(d0; 2, ~)=  t 

t k~O-~) ,  if 2)>~ 

( 
L(dl ; 2, ~) = 

t 0 ,  if 2)>~ 

where kl~_~)>0 are known, and the prior density function is 

!D(2)= l /9~+'2"e-P~/F(a+I), if 2)>0 ( a ) > - l ,  /9)>0) 

1 0 ,  if 2___O 

where a and /9 are assumed known. 
Then, writing (u) + for the positive part of u, 

h(~, y)= f: f: [k'(2-1~)+--k'(P-2)+][x!Y!F(a+ 1)F(a+l)]-'2"+"p '+" 

�9 exp [-(1+/9)(2+p)]d2d~. 

Since we are interested only in the sign of h(x, y), we can freely neglect 
positive multiples, even those involving x and y. We will use the symbol 
"or in this sense only. We introduce the variable r=p]2 and let k-- 
k,/ko. Then 

h(x, y)~ f: I: [2(1-r)+-k2(r--1)+]2~+'+"r'+" exp [-2(1 +/9)(1 +r)]2d2dr 

f :  [ (1-r)+-k(r-1)+]r~+" I :  2~+Y+2"+~ exp [-2(1+/9)( l+r)]d2dr 

I~ [(i-,.)+- ~(r- i)+]r~+-(i + r)-'+~+:-+"d,. 0r 

-- I: (1--r)r.+~(1.l-r)-c,+y+k+')dr 

-k I~ (~.- I).,-,+-(I +,-)-~'+,+,.+,,er. 

Changing from r to l i t  in the second integral and then to z=rl(l+r) 
in both, we get 

( 2 ) h(z, y) ocI:n (1-2z)z~+"(1-zy+'dz 

I? - k  ( 1 - ~ . ) e ' + " ( 1 - z ) , §  . 
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Now let I~a(m, n)=F(m+n+2)[F(m+l)T'(n+l)] -~ z'(1-z)"dz, the in- 

complete beta integral. Making use of the identity /,a(m, n ) - l - / , a ( n ,  
m), we find that  

h(x, y ) c c x - y - ( k  + l ) ( z+y+ 2aT 2)f~/z(xTa, y+a) 
+2(y+a+l)f,a(x+a, y+a+l) 
+2k(z+a+ l)lla(z+~+ l, y+a) . 

Finally, 

SO 

/us(m, n) = / l a ( m -  1, n + 1 ) -  F(m + n + 2) 

�9 [ f ( m - -  1)/'(n + 2)]-'a-('+'§ 

h(x, y) or x - y - k F ( x  +y+2a+3)[F(x +a+ 1)F(y+a+ 2)2~§ -~ 
+ 2[kx +y + (k + l )(a + l )]f~a(x +,z, y + a + l )  
--(k+ l)(x+yT2a+2)I~a(x+a, y+a) . 

It remains to show that  the component solutions are compatible. 
We can write (2) as 

I'," (1- 

__ =+. l--z y-z 

The last factor in the integrand is clearly non-positive for x_~y (since 
k is assumed not less than one) whereas the other factors are positive. 
So for x~_y, h(x, y)~_O and decision do is made. That is, the set {(x, y): 
h(x, y)>0] is contained in the set {(x, y) : x>y]. In the other component 
problem involving 1 and /4 the decision /J>2 would be made when 
h(y, x)>0. But by symmetry, the set {(x, y):h(x, y)>0]  is a subset of 
{(x, y) : y>x}.  Hence the sets {(~, y) : h(x, y)>0] and [(x, y) : h(y, x)>0} 
do not intersect, so the solutions given by the component two-decision 
problems are compatible. The compatibility condition is seen to be that  
the ratio k~/k,o is not less than unity�9 

4. Other loss functions 

If l l - -p l  is replaced in (1) by 12-p  I p, for any non-negative integer 
p, the same sequence of steps gives 
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�9 [F(x+y+l)F(y+a+]+l)I~/ ,(y+a+], ~+a) 
--kF(z-{-~-t-3 + l)F(y-[-a+ l)Iu,(x +a-t-], y-t-a)]. 

Another form of loss function is obtained by substituting (2//~)~ for 
(a-/J) and (/~/~)~ for (/J-a) for any 0_~7~_a+l. Then it is easily verified 
that  

(4) h(~, y)oc F(x+a+Tq-1)F(y+a-7+ l)I~n(yq-a- 7, ~ +a+T) 
-kF(z+a-7+l)F(YWa+7+l)lu~(x+a-T, Y+=+7) �9 

In the special case of (3) with p = 0  or of (4) with r = 0  we get 

h(x, y)oc l--(k + l)Im(z+a, y+a) . 

The same compatibility condition applies in these cases. 

5. Form of the critical region 

It  is of interest to verify that  for fixed y, we make decision d0 for 
x ~ 0 ( y )  and decision d, otherwise. This result is not obvious since h(~, y) 
is not monotonic in z for fixed y ;  the result is true, however, for the 
cases considered in the previous section, as can be established by the 
following reasoning. The form of equation (2) corresponding to the loss 
function involving (2/1~) r and (14,~)" is 

I 
I/Z 
0 zY+"-r(1 -- z)"+'+r[(1 -- z)'-Y-- kz',"]dz. 

Suppose that  for some given x and y this expression, a positive multi- 
ple of h(x, y), is negative�9 Then h(x, y)<0  and h(x-1,  y) is a positive 
multiple of 

t: n z'+"-r(1- z)"+"+r[ (1-z)~-Y-l - kz~-~-']dz 

r 1/2 
~--1o z~+~-~(1- z)u+'+r[2(1-z)~-'J- 2kz'-Y]dz 

i llZ 
= 2 zY+'-~(1 -- z)Y+~+r[(1 -- z)"-"-- kz'-u]dz. 

J0 

Therefore, h (x -1 ,  y) is negative whenever h(z, y) is negative. An argu- 
ment along the same lines shows that  for the loss function involving a 
power of the absolute difference of the parameters the same statement 
holds. Furthermore, for either type of loss, h(z, y) positive implies that  
h (~+ l ,  y) is positive. It follows that  for fixed y, h(~, y) changes sign 
at most once. 
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